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Magnetic Resonance (MR) imaging is difficult to apply to multi-phase flows due to both the inherently
short T�2 characterising such systems and the relatively long time taken to acquire the data. We develop
a Bayesian MR approach for analysing data in k-space that eliminates the need for image acquisition,
thereby significantly extending the range of systems that can be studied. We demonstrate the technique
by measuring bubble size distributions in gas–liquid flows. The MR approach is compared with an optical
technique at a low gas fraction (�2%), before being applied to a system where the gas fraction is too high
for optical measurements (�15%).

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Magnetic resonance (MR) is being increasingly applied to study
multi-phase flows due to its ability to study optically opaque sys-
tems non-invasively. However, MR is an inherently slow technique
with conventional imaging approaches requiring several minutes
to acquire an image. A variety of fast imaging techniques are avail-
able [1–3], however these are still not quick or robust enough to
study multi-phase flows which are characterised by rapid temporal
variations, high shear rates and short relaxation times. This paper
presents a new method of characterising multi-phase flows by
re-posing the MR experiment as a Bayesian analysis problem that
does not require image acquisition. Such an approach is advanta-
geous for dynamic systems and could also be applied to low sensi-
tivity portable MR systems. The procedure is developed and
demonstrated for sizing gas bubbles in liquid flows.

Accurate measurement of bubble size is critical to improving
our understanding of fundamental physical phenomena in multi-
phase flows including turbulent drag, bubble coalescence, and heat
transfer. However, the sizing of bubbles, particularly in high volu-
metric gas fraction flows, remains challenging. Measurements are
currently made using optical, electrical, and light scattering tech-
niques, amongst others [4–6]; these techniques have their limita-
tions. Invasive techniques distort the local bubble size and shape.
Non-invasive techniques are limited to low gas fraction ([5%)
ll rights reserved.
systems or near wall observations because of the increased light
scattering by dense bubble swarms and interference effects be-
tween neighbouring bubbles. The Bayesian approach developed
in this work is applicable to high gas fraction measurements (up
to �50%), and thus enables measurements of systems that were
previously impossible to study.

Bayesian analysis has previously been used in a variety of MR
applications [7–10]. It has been shown to improve the recovery
of an MR spectrum from noisy data [7] and to improve the accuracy
of flow measurements by enabling a sparse sampling procedure to
be used [9]. In this work we exploit both these advantages of
Bayesian analysis to enable measurements of the bubble size dis-
tribution in a dynamic system.

The approach used is derived from texture analysis concepts in
image processing [11] and extends previous approaches for analys-
ing MR data [12] to provide quantitative measurements in dy-
namic systems. The signal measured using MR, S(k), is governed
by:

SðkÞ ¼
Z

qðxÞ expði2pkxÞdx; ð1Þ

where q(x) defines the image (e.g. liquid map), x corresponds to the
spatial position and k ¼ cð2pÞ�1 R GxðtÞdt, where c is the gyromag-
netic ratio and Gx(t) describes the strength of the magnetic field gra-
dient in the x-direction as a function of time, t. Thus, the signal, S(k),
and image, q(x), are mutually conjugate Fourier pairs; hence by
controlling the gradient strength as a function of time it is possible
to sample any point in the spatial frequency domain of the image,
commonly referred to in MR literature as k-space [13].
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Fig. 1. (a) Plot of the projection onto the x-axis of 30 spheres each of radius 2 mm
and (b) (�) the magnitude of jF(k)j and (—) E(jF(k)j) of the discrete Fourier transform
of the data shown in (a). The intensity on the vertical axis in (a) is proportional toR R

qðx; y; zÞdydz. The solid line in (b) is derived from Eqs. (6) and (7).
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In conventional MR, an image of the system is obtained by mea-
suring a signal in k-space and then taking a discrete Fourier trans-
form of these data. This image would subsequently be analysed to
obtain the desired information, for example a bubble size distribu-
tion. However, multi-phase flows will often change over a time
scale less than that required to acquire an image, leading to mis-
registration artefacts in the image that make the subsequent anal-
ysis challenging, inaccurate and frequently impossible.

In the Bayesian approach proposed in this paper, a likelihood
function is developed relating the measured signal, S(k), to the
state of the system h (e.g. the bubble size distribution). This elim-
inates the conventional imaging requirement that the system is
stable for the duration of the acquisition, requiring only that h is
constant during the experiment. In this specific case of a bubble
size distribution, the size and location of individual bubbles will
change over a time scale of the order of a few milliseconds. How-
ever, the overall distribution of bubble sizes will remain stable over
time, as it is determined by only the fluid properties, system design
and operating conditions [14]. Therefore, a system that cannot be
studied by image acquisition can be studied using a Bayesian
methodology. The Bayesian approach reported here enables the
characterisation of the size distribution of approximately spherical
objects in multiphase systems. Therefore, in addition to the exam-
ple of bubble sizing reported here, this same analysis could be ap-
plied to, for example, emulsion droplet sizing, droplet sizing of
sprays, and the determination of pore size in porous media. The
present case study was selected because the measurement of bub-
ble size distributions in gas–liquid flows above a gas fraction of 5%
cannot be made by optical techniques and represents a significant
measurement challenge. We develop the technique and present re-
sults from numerical simulations of bubble size distributions with
both ideal and noisy data. Numerical simulations suggest that the
technique is applicable up to a gas fraction of 50%. We then com-
pare experimental measurements of the bubble size distribution
at low gas fraction (�2%) with an optical technique, before present-
ing measurements of the bubble size distribution at a gas fraction
of �15%, which is in excess of that which can be measured
optically.

2. Model development

In Bayesian analysis the state of a system h is inferred from a set
of observations ŷ from the posterior probability density function
pðhjŷÞ:

pðhjŷÞ / pðŷjhÞpðhÞ; ð2Þ

where pðŷjhÞ is the likelihood function and p(h) incorporates prior
knowledge. In this work we are attempting to determine the size
distribution of bubbles, which corresponds to h, given a set of mea-
surements, ŷ, of the signal intensity in k-space. In the approach de-
scribed here, we assume a functional form for the size distribution
and estimate the parameters of that distribution. Thus, if the radius
of an individual bubble is r, then we characterise the distribution of
r by modelling it using two parameters, the mean radius �r and a
standard deviation rr. These two parameters describe the state of
the system h, which we obtain as pðhjŷÞ. We present results for
two cases: (i) bubbles of a single size, i.e. rr = 0 and rj ¼ �r for all
bubbles j and (ii) a bubble size distribution given by a log-normal
distribution, where the log-normal distribution is defined by:

pðr;l;rlÞ ¼
1

rrl
ffiffiffiffiffiffiffi
2p
p exp �ðln r � lÞ2

2r2
l

 !
; ð3Þ

and the parameters l and rl uniquely define the mean

�r ¼ exp lþ r2
l=2

� �
and variance r2

r ¼ �r2 exp r2
l

� �
� 1

� �
of the dis-
tribution. We use a log-normal distribution as this is observed
empirically [4,5]. In each case, the calculated posterior distribution
characterises the probability distribution for the parameters �r and
rr.

The likelihood function is determined by considering how the
signal intensity varies in k-space given a particular distribution
of bubble sizes and bubble shape. We begin by formulating a 1D
image f(x) which comprises the projection of N bubbles onto the
x-axis. The projection of each individual bubble is defined by a
function h(r,x), where r is the characteristic size of the bubble
and x is the spatial coordinate. Then, defining the Fourier trans-
forms of f(x) and h(r,x) as F(k) and H(r,k), respectively, the signal
measured by MR obeys:

FðkÞ ¼
XN

j¼1

Hðrj; kÞ expð�i2pkxc;jÞ; ð4Þ

where xc,j is the location of the centre of the jth bubble and use has
been made of the linearity and shift invariance of the Fourier trans-
form. As an example, Fig. 1 shows (a) f(x) for a simulation of 30
identical spherical bubbles and (b) the corresponding magnitude
of F(k), the discrete Fourier transform of these data. Assuming
{xc,j} is independent and identically distributed, then for a given k,
the expected F(k) is 0, i.e. E(F(k)) = 0 and

EðjFðkÞj2Þ ¼ NEðjHðrj; kÞj2Þ: ð5Þ

If a signal is obtained from the magnitude of a sum of complex val-
ues, each of random phase, this signal will be described by the Ray-
leigh distribution [15], provided the number of values in the sum is
sufficiently large. Therefore, in the limit of large numbers (i.e. large
N), the likelihood function describing the magnitude of the signal at
any given k will be defined by a Rayleigh distribution:

pðjFðkÞjjkÞ ¼ jFðkÞj
kðkÞ2

exp � jFðkÞj
2

2kðkÞ2

 !
; ð6Þ

where k2 = E(jF(k)j2)/2. The value of N required for Eq. (6) to hold
will depend on the distribution of bubble sizes in the system. For
bubbles of a uniform size, EðjHðrj; kÞj2Þ ¼ jHð�r; kÞj2 and therefore
Eq. (6) holds for N P 2. For a bubble size distribution given by a
log-normal distribution the value of N required will depend on
the parameters of the distribution and an expression similar to
Eq. (6) can be derived numerically; for log-normal distributions
with rr < 0:5�r, numerical results show that Eq. (6) holds for realis-
tic experimental values of N (i.e. N P 6).

Eq. (6) defines the likelihood function for the signal as a function
of �r and rr. Therefore, if k2 is known for all �r and rr; pðhjŷÞ is obtained
from Eq. (2), and this can be used to estimate h � f�r;rrg which
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characterises the bubble size distribution. Assuming gas bubbles in
water to be spherical in shape [16] and a size distribution given by
a delta function, i.e. rr = 0 such that rj ¼ �r for all j, an analytical
expression for H(r,k), and therefore k, is obtained:

k2ðr; kÞ ¼ N
2

sinð2pkrÞ � 2pkr cosð2pkrÞ
2p2k3

� �2

: ð7Þ

E(jF(k)j), calculated using Eqs. (6) and (7), is shown in Fig. 1b for the
simulated data. For more complex shapes or distributions of sizes, a
numerical approach is preferable where E(jH(rj,k)j2) is obtained by
Monte-Carlo simulation.

The validity of the choice of likelihood function given by Eq. (6),
was tested by numerically simulating the signal intensity, jF(k)j,
generated for an image comprising of 10 randomly positioned bub-
bles each of radius 2 mm. By repeating this simulation many (104)
times the probability distribution for jF(k)j was obtained. These re-
sults are shown in Fig. 2 for k = 225 m�1 and 525 m�1, and are in
good agreement with the theoretical Rayleigh distribution ob-
tained from Eqs. (6) and (7). Similar results were obtained when
k was derived using a numerical simulation. These results suggest
that our choice of the likelihood function is appropriate.
3. Results and discussion

The robustness of the Bayesian bubble sizing approach with re-
spect to realistic bubble size distributions was first tested numer-
ically. Bubbles from a predefined size distribution (i.e. known �r and
rr) were selected by Monte-Carlo simulation to produce the image
f(x), and consequently F(k). Bayes theorem, Eq. (2), was then used
to calculate the posterior distribution, from which the parameters
�r and rr, and hence the bubble size distribution, were estimated. A
simple uninformative prior was used. It was defined as a set of dis-
crete of values evenly spaced within the range 0.15–3.5 mm; the
probability of each of the parameter values considered was as-
sumed to be identical. The likelihood was defined by Eqs. (6) and
(7). Analysis was performed using 128 data points in k-space. Ini-
tially this process was performed for a bubble size distribution gi-
ven by a delta function, and thus only the mean size (�r) was
estimated. The simulation was repeated 20 times with �r increasing
from 0.3 to 3 mm in each subsequent simulation. Fig. 3a shows a
plot of the posterior mean �r for each simulation against the input
size in that simulation. The uncertainty in the estimated �r was cal-
culated from the standard deviation of the posterior distribution
for each input �r. The results indicate that for bubbles between
0.3 mm and 3 mm diameter, the method yields excellent estimates
of the input bubble size. The root mean squared (rms) error for
these data was 0.04 mm. The sensitivity of the measurement to
the chosen prior was tested by comparing the estimates of �r using
Fig. 2. Plot showing the simulated probability distribution for jF(k)j of 10 bubbles at
(N) k = 225 m�1 and (�) k = 525 m�1. The lines give the theoretical probability
distributions as defined by Eq. 6.
a prior that was uniform in the logarithm of the bubble size. This
was found to change the estimate of the mean size by <1%. It
should be noted that the range of bubble size being characterised
can be scaled arbitrarily within the limits of the signal-to-noise ra-
tio (SNR) and the physical dimensions of the radiofrequency coil by
changing the k-space points sampled. This means that in practice
the technique is applicable to measurements where �r ranges from
30 lm up to 30 mm.

The accuracy of estimation of �r when the bubbles are given by a
log-normal distribution (i.e. with non-zero rr) is also illustrated in
Fig. 3a. The data in Fig. 3a show that the bubble size distribution is
estimated with a rms error of 0.1 mm for �r; a similar result was ob-
tained for rr. In these simulations, rr ¼ 0:15�r in each case. How-
ever, by changing the number of data points sampled, larger
standard deviations up to at least rr ¼ 0:5�r can be measured.

To examine the effect of noise on the estimate of �r and rr,
Gaussian noise was added to the complex k-space data. Noise
effectively sets a lower bound on the expected signal intensity,
thereby reducing some of the information available, particularly
at high k-space values. The effect of experimental noise on the esti-
mation of �r is shown in Fig. 3b and on the estimation of rr in Fig. 3c.
The rms errors for �r from these data were 0.1 and 0.4 mm for SNRs
of 1000 and 10, respectively, indicating that even in the presence
of substantial noise it is possible to estimate the bubble size
accurately.

Lastly, the effect of increasing gas fraction was examined. As the
gas fraction increases the positions of bubbles become constrained
by the location of other nearby bubbles thereby introducing order-
ing into the locations of bubbles. The effect of this exclusion pro-
cess on the estimated size distribution was tested by numerically
generating a set of data jF(k)j where bubbles were sequentially
added such that the position of new bubbles was constrained by
the locations of previously placed bubbles. This was achieved by
choosing the location of new bubbles using a probability density
function governed by the unoccupied cross-sectional area of a col-
umn remaining at each vertical position x along the length of the
column. This probability distribution is described by:

pxc;n
ðxjDc; fxcgÞ /

pD2
c

4
�
Xn�1

j¼1

p r2
j � ðx� xc;jÞ2

� �
if jx� xc;jj 6 rj

0 if jx� xc;jj > rj

(
;

ð8Þ

where pxc;n
is the probability of finding the nth bubble centred at any

point x, xc,j is the location of the centre of the jth bubble, Dc is the
diameter of the containing column and rj is the diameter of
the jth bubble. Any point x would be rejected if it would result in
the volume of bubbles in a given cross sectional slice exceeding
the volume of that slice. A new point x would then be chosen using
Eq. (8). An estimate of �r was then obtained using the approach out-
lined above for gas fractions from 1% up to 60%. Over this range of
gas fractions using a SNR of 1000 with �r set to 1.6 mm and rr set to
0.1 mm, the mean bubble size was estimated accurately for gas
fractions up to 50%, as shown in Fig. 4. At gas fractions in excess
of 50%, the measurement begins to deteriorate, however we note
that the bubble flow will likely transition to slug flow at a gas frac-
tion below 50%. This confirms that the technique is valid for mea-
surements of bubble size distributions up to the highest gas
fractions at which gas bubbles will exist.

To test our approach experimentally, �r and rr were measured on
a system with a low gas fraction using both an optical technique
and the MR technique proposed in this work. The apparatus con-
sisted of a 31 mm inner diameter column filled with deionised
water containing 0.1 mg ml�1 sodium dodecyl sulphate to mini-
mise bubble coalescence and 16.8 mM dysprosium chloride to re-
duce the water relaxation time and minimise susceptibility
differences between the water and air. Gas bubbles were



Fig. 3. (a) Estimated �r, as a function of the input �r for (�) delta function and (�) log-normal bubble size distributions in the absence of noise. (b) Estimated �r and (c) estimated
rr for log-normal bubble size distributions in the presence of added Gaussian noise where the SNR was (�) 1000 and (N) 10. Each simulation contained 10 bubbles selected
from the appropriate bubble size distribution and the solid lines describe the desired trend, i.e. y = x. The error bars are given by the standard deviation of the posterior
distribution.

Fig. 4. Simulations illustrating the effect of ordering arising from dense concen-
trations of bubbles. The parameters (�) �r and (N) rr were estimated for simulations
at increasing gas fraction with �r ¼ 1:6 mm and rr = 0.1 mm. The sizing is shown to
be robust up to a gas fraction of at least 50%. The effect of increasing gas fraction
was simulated according to Eq. (8).

Fig. 5. Photographs of a swarm of gas bubbles obtained using (a) distributor 1 and
(b) distributor 2 at a gas fraction of �2% in each case. (c) Comparison of the size
distribution obtained in these systems using distributor 1 (black) and distributor 2
(grey) from both the optical (solid lines) and MR (dashed lines) techniques. MR
measurements were also taken at a gas fraction of �15% using distributor 2 (dotted
line) where the optical technique could not be used.
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introduced using either a porous stone (distributor 1) or porous
rubber (distributor 2) gas-sparger. To compare bubble size
distributions at low gas fraction, which could be characterised
using both MR and optical measurements, a gas flow rate of
100 ml min�1 was used. At this gas flow rate the gas fraction in
the system was �2% with both distributors. The MR technique
was also demonstrated at a higher gas fraction using a flow rate
of 1000 ml min�1, giving a gas fraction of �15%. Photographs of
the system were obtained using a Canon Powershot A630 digital
camera. MR measurements were performed on a Bruker AV400
spectrometer with a 38 mm imaging coil.

The Bayesian approach eliminates the requirement of conven-
tional image acquisition that every point in k-space be sampled
with the same bubbles located at the same positions. Instead we
require only that all samples are obtained from the same bubble
size distribution, i.e. the distribution of bubble sizes are governed
by the same �r and rr. Therefore, data were acquired using a single
point imaging (SPI) protocol [17] which had the advantages of min-
imising the effects of velocity attenuation on the signal and allow-
ing selective acquisition of the data from the most appropriate
positions in k-space, thereby improving the accuracy of the mea-
surement. The experiment was performed in two steps: (1) a single
point was acquired to determine the gas fraction at the given gas
flow rate, then (2) 128 data points were acquired for k-space points
ranging from �2270 m�1 to 2270 m�1, but excluding points for
jkj 6 133 m�1. The excluded points are dominated by the low spa-
tial frequency information and therefore contain little information
about the bubble size distribution. This approach is analogous to
that of Barrall et al. [12], though has the advantage that the signal
for jF(k)j at large k can be amplified further without saturating the
receiver since high intensity signals at low k are not measured. This
increases the SNR for those points measured, and therefore im-
proves the accuracy of the estimate of �r and rr.

Fig. 5a and b shows two photographs of the bubbles in the col-
umn using the two gas distributors. As seen in Fig. 5, distributor 2
produces larger bubbles than distributor 1. As the gas fraction in
these systems was very low (�2%), the bubble size distribution
could be measured directly from the photographs. These are shown
by the solid lines in Fig. 5c. For the optical measurement and anal-
ysis >50 bubbles were measured. The dashed lines in Fig. 5c show
the bubble size distribution calculated using the Bayesian ap-
proach outlined in this paper to obtain the parameters �r and rr

of a log-normal distribution of bubble sizes. The function k2 was
obtained from a Monte-Carlo simulation of a log-normal bubble
size distribution. The bubble size distributions measured for each
system using the optical and MR techniques were in excellent
agreement. The Bayesian approach is equally valid for both low
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and high gas fraction systems and therefore can be used in systems
where optical techniques cannot. This is demonstrated in Fig. 5 by
the measurement of the bubble size distribution at a gas fraction of
�15%, well beyond that which can be measured optically. The
mean bubble size was seen to increase, as would be expected
due to the increased probability of bubble coalescence in a dense
bubble swarm.
4. Conclusions

In this paper a method for measuring the size distribution of gas
bubbles has been developed based on Bayesian analysis of MR
data. The method is demonstrated to provide measurements of
bubble size distribution in gas–liquid flows which cannot be mea-
sured using other MR approaches, and at gas fractions in excess of
those that can be studied optically.
References

[1] P. Mansfield, Multi-planar image formation using NMR spin echoes, J. Phys. C
10 (1977) 55–58.

[2] J. Hennig, A. Nauerth, H. Friedburg, RARE imaging: a fast imaging method for
clinical MR, Magn. Reson. Med. 3 (1986) 823–833.

[3] A. Haase, J. Frahm, D. Matthaei, W. Hanicke, K. Merboldt, FLASH imaging. Rapid
NMR imaging using low flip-angle pulses, J. Magn. Reson. 67 (1986) 258–266.
[4] S. Saxena, D. Patel, D. Smith, J. Ruether, An assessment of experimental
techniques for the measurement of bubble size in a bubble slurry reactor as
applied to indirect coal liquefaction, Chem. Eng. Commun. 63 (1988) 87–127.

[5] A. Cartellier, J.L. Achard, Local phase detection probes in fluid/fluid two-phase
flows, Rev. Sci. Instrum. 62 (1991) 279–303.

[6] R. Mudde, J. Groen, H. Van Den Akker, Application of LDA to bubbly flows, Nucl.
Eng. Des. 184 (1998) 329–338.

[7] G.L. Bretthorst, C. Hung, D.A. D’Avignon, J.J.H. Ackerman, Bayesian analysis of
time-domain magnetic resonance signals, J. Magn. Reson. 79 (1988) 369–376.

[8] G.L. Bretthorst, W.C. Hutton, J.R. Garbow, J.J.H. Ackerman, Exponential
parameter estimation (in NMR) ssing Bayesian probability theory, Concepts
Magn. Reson. A 27A (2005) 55–63.

[9] D. Xing, S.J. Gibbs, J.A. Derbyshire, E.J. Fordham, T.A. Carpenter, L.D. Hall,
Bayesian analysis for quantitative NMR flow and diffusion imaging, J. Magn.
Reson. B 106 (1995) 1–9.

[10] R.W. Wise, B. Newling, A.R.C. Gates, D. Xing, T.A. Carpenter, L.D. Hall,
Measurement of pulsatile flow using MRI and a Bayesian technique of
probability analysis, Magn. Reson. Imag. 14 (1996) 173–185.

[11] R. Gonzalez, R. Woods, Digital Image Processing, Prentice Hall, New Jersey,
2008.

[12] G.A. Barrall, L. Frydman, G.C. Chingas, NMR diffraction and spatial statistics of
stationary systems, Science 255 (1992) 714–717.

[13] P. Callaghan, Principles of Nuclear Magnetic Resonance Microscopy, Clarendon
Press, Oxford, 1991.

[14] W. Deckwer, Bubble Column Reactors, Wiley, Chichester, 1992.
[15] A. Cardenas-Blanco, C. Tejos, P. Irarrazaval, I. Cameron, Noise in magnitude

magnetic resonance images, Concepts Magn. Reson. A 32A (2008) 409–416.
[16] R. Clift, J. Grace, M. Weber, Bubbles, Drops, and Particles, Academic Press, New

York, 1978.
[17] S. Emid, J. Creyghton, High resolution NMR imaging in solids, Physica B 128

(1985) 81–83.


	A Bayesian approach to characterising multi-phase flows using magnetic  resonance: Application to bubble flows
	Introduction
	Model development
	Results and discussion
	Conclusions
	References


